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Appendix A: Constrained beta-binomial model

We can define a model where we constrain the stimulated proportions under the alternative model such that
p®) > p(®  In this case, the only changes required are for the alternative marginal likelihood L; defined
in the main manuscript by (1). Due to the constraint, the normalizing constant of the prior under the
alternative (model M) is not given by B(a(®), 3(*))B(a(®), 3(*)) but requires computing
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Using this expression, the constrained alternative marginal likelihood can be written as
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In general, there is no closed-form expression for Z(-), and a numerical approximation must be used. Let
us denote by z (a(“ B ols) 3 S)) the approximation. A natural way to estimate Z is to use Monte Carlo
integration. Indeed, we can write
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where F,, () g(» is the cumulative distribution function of a beta random variable with parameters a® and
B(). Using this identity, it can be seen that Z(a(“), B a(*) B(5)) can be approximated by
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where the X},’s are iid beta distributed random variables with parameters a(*), 8(*) and K is the number
of terms used in the Monte Carlo approximation. This approximation works relatively well with our EM
implementation and does not significantly increase the computing time. Unfortunately, the number of terms
(i.e. value of K) required for the approximation to be good might be large and computing such a normalizing



constant at each iteration would significantly slow down our MCMC implementation. As it tuns out, a better
approximation can be obtained when a(®) and 3(*) are integers. In this case, the cdf function in (1) can be
calculated exactly using integration by parts, as follows,
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Typically, in ICS data a(*) is relatively small leading to relatively few terms in the sum. However, the use
of this exact identity in our MCMC algorithm requires the use of discrete priors on a(®) and 3(*), which can
be restrictive in terms of fit (e.g., if the true a(®) is less than one) and can render mixing in the MCMC
more difficult. In addition, even though the computation is exact and much faster for small values of (%),
which is typically the case with ICS data, it is still more demanding than the unconstrained model. In
our case, we have decided to use the unconstrained model and simply fix the z; to zero if the empirical
proportion for the un-stimulated sample, p(*), is greater than that of the stimulation sample, p(*). Indeed,
in the one-sided case, if p(*) > p(*) the associated individual should be a non-responder and thus z; = 0.
In our experience, this computational shortcut performs just as well as the true one-sided implementation
while being computationally much less demanding.

Appendix B: Computational details for the beta-binomial model

Marginal likelihood derivations
For a given subject 4, the null marginal likelihood is obtained after integrating out the prior from the
likelihood for model My, as follows,
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Similarly, the alternative marginal likelihood for a given subject is defined as,
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We compute Zz; as:
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MCMC algorithm

In what follows, we use (z]y) to denote the conditional distribution of z given y. In particular, we use (z|---)
to denote the distribution of x conditional on everything else in the model. Our MCMC algorithms cycles
through the following steps:

1. Update each a(®, 5™ o(*) and B®) by Metropolis-Hastings using a Gaussian symmetric proposal
where the variance of the proposal is tuned for each parameter using the approach of Gelman and
others (2004).

2. Update w by Gibbs sampling using the full conditional,
(w]-++) ~Beta(D>_ zi, » (1 - 2))

3. for each ¢, update z; by Gibbs sampling using the following full conditional,
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For each updated parameter, step 1 above involves the calculation of the following acceptance ratio, (e.g.
(™) below),
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where L is the complete marginal likelihood conditional on z defined as,
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and 7 is the prior distribution of a(*). The obvious changes in the above expression are made for the
acceptance ratios of a(®), 3(5), () In our case each parameter has the same exponential prior with mean
1,000



T t
%, where T is the number of MCMC iterations and b is the number of

Finally, z; is calculated as
burn-in iterations.
Implementation Details for MCMC Algorithm
We used the method of Raftery and Lewis (1992) and Raftery (Gilks and others, 1996) to determine the
number of iterations, based on a short pilot run of the sampler. For each dataset presented in the manuscript,
we calculated that no more than about 100,000 iterations with 50,000 burn-in iterations was sufficient to
estimate standard posterior quantities. To leave some margin, we used 200,000 iterations after 50,000 burn-in
iterations for each dataset explored here.

Appendix C: Computational details for the Dirichlet-multinomial model

Marginal likelihood derivations
Because our Dirichlet-multinomial is a direct extension of the beta-binomial model, the marginal likelihoods
are obtained in the exact same fashion. For a given subject, the null marginal likelihood is defined as
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MCMC algorithm
The MCMC algorithm for the Dirichlet-multinomial model is analogous to the beta-binomial, above. The
parameter vectors a(®), a(®) are updated component-wise:

1. Update each 04,(:), a,(fu) using a Gaussian symmetric proposal distribution with the variance of each
proposal tuned using the approach of Gelman and others (2004).

2. Update w by Gibbs sampling using the full conditional,
(w]-++) ~Beta(D>_ zi, ¥ (1 - 2))

3. For each i, update z; using the full conditional,
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For each parameter component updated in step 1 above, compute the acceptance ratio (e.g. oz,(cu),

below):
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Supplementary Figure 1: Comparison of MIMOSA on other cytokines and cytokine combinations for
ENV-1-PTEG stimulated CD4+ T-cells from the HVTNOG65 trial.

where 7 is the prior distribution of the parameter, and a?i)k} = {a§“) : j # k}. Again, we have used

the same exponential prior with mean 1,000 for each parameter. L is the complete marginal likelihood
conditional on z, defined as
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Supplementary Figure 2: Effect of deviations of the assumptions of 100% true responders at the post-
vaccine time point on A) ROC and B) FDR curves. The true response rate is shown in the gray box above
each plot.
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Supplementary Figure 3: Histogram of the empirical proportions of unstimulated cells and overlaid
posterior densities of the beta distribution with a(*) and ™) estimated from the data for ENV-1-PTEG
stimulated, IFN—y+, CD4+4 T-cells, demonstrating that the assumption of a common distribution for p;,
across subjects is reasonable.
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Supplementary Figure 4: One-sided MIMOSA model fit to simulated data with 50K cells and varying
values of I (number of observations). A) Average ROC curves from 10 simulations for 20, 50 and 100
observations. B) Average observed and nominal FDR from 10 simulations for 20, 50, and 100 observations.
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Supplementary Figure 5: Unconstrained MIMOSA model fit to two-sided data with small counts and to
data from a model violating model assumptions. For two-sided data A) the average ROC from 10 simulation
with N=10,000 cells. B) the average observed and nominal FDR from 10 simulations with N=10,000 cells.
Data was simulated from a model where proportions were sampled from a truncated normal distribution

over [0,1] rather than a Beta distribution. C) Average ROC for N=>50,000 cells D) Average observed and
nominal FDR for N=50,000 cells.
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Supplementary Figure 6: Multivariate simulations from a two-sided model. Ten, eight-dimensional data
sets were simulated from a two-sided model with an effect sizes of 2.5 x 1073 and —2.5 x 1072 in two of
the eight dimensions (N=1,500). Multivariate MIMOSA was compared against Fisher’s exact test, and the
likelihood ratio test. A) Average ROC curves for the competing methods over 10 simulations. B) Average
observed and nominal false discovery rate for each method over 10 simulations. This figure appears in color

in the electronic version of this article.
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Supplementary Figure 7: Volcano plots of effect size vs posterior probability of response for each model fit
to each cytokine in the ICS data set. Green points indicate subjects called responders for that cytokine and

stimulation at a 1% FDR threshold (adjusted across subjects within cytokine subset). Red points indicate
non-responders. Visit code 2 is day 0, and 12 is day 182. VACCINE=FALSE indicates a placebo recipient,

while TRUE indicates a vaccinee.
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